154. The Magnitude of the Solvent Effect in Dipole-moment Measurements. Part IV. Determination of Distortion Polarisation and its Additivity in the Alkyl and Aryl Halides.

By Arnold Audsley and Frank R. Goss.

By combining dielectric-polarisation data for ethyl bromide in the liquid and the vapour state, it was shown in Part II (J., 1940, 752) that some of the uncertainty concerning the magnitude of the atom polarisation $\left(P_{\mathbf{\Lambda}}\right)$ could be eliminated. In this paper methods for deciding the distribution of the polarisation of binary liquid mixtures between their components are discussed, and the necessary data are presented to extend the above elimination method for the determination of the distortion polarisation $\left(P_{\mathrm{E}+\Lambda}\right)$ to compounds of all four halogens. It is also found that the polarisation of nonpolar hydrocarbons, and the values of $P_{\mathrm{E}_{+\Lambda}}$ obtained by this elimination can, for certain halogen compounds, be expressed as the sum of contributory values assigned to each atom or bond. Values of $P_{\mathbf{E}_{+\Lambda}}$ for carbon, hydrogen, and all four halogens in compounds of the type RX are calculated, and it is shown that, whereas the electron polarisation $\left(P_{\mathrm{E}}\right)$ increases, P_{A} appears to exhibit a general tendency to decrease in ascending the series from fluorine to iodine.

Sources of Error in Dipole-moment Measurements.-Dipole-moment measurements made in the vapour phase are subject to two main sources of error arising first out of deviations from ideal-gas behaviour, and secondly out of the impracticability of direct determination of the atom polarisation. Measurements made in the liquid phase are also liable to two sources of error, arising in this case from the solvent effect and from the atom polarisation.

Deviations of the vapour from ideal-gas behaviour can be eliminated by suitable corrections such as those used by McAlpine and Smyth (J. Amer. Chem. Soc., 1933, 55, 459 ; cf. Smyth and McAlpine, J. Chem. Physics, 1934, 2, 499), and in the liquid, the solvent effect can be calculated by the appropriate equation as described in Part II (loc. cit.). Provided these corrections can be applied to any particular case, there remains only one main source of error which is common to both phases, viz., that due to the atom polarisation. This error could, it is true, be removed in the case of the vapour by making use of the temperature variation of the polarisation, which obeys the Debye expression, $P=a+$ b / T. However, as was shown by Groves and Sugden (J., 1937, 1779), it is in many cases difficult to make accurate measurements over such a suitable and sufficient range of temperature as to give the constant a in the above formula with the necessary precision. This results in an experimental error which may be too great to give a satisfactory value for $P_{\mathrm{A}} . \quad P_{\mathrm{E}+\mathrm{A}}$ could similarly be obtained from the solvent-effect equation $P_{\mathrm{S}}=P_{\mathrm{E}+\mathrm{A}}+$ $Z(\varepsilon-1)^{4} /(\varepsilon+2)^{4}+Y / \varepsilon$ by making use of three values of the partial polarisation $\left(P_{\mathrm{s}}\right)$ determined for different dielectric constants to give the three unknowns $P_{\mathrm{E}+\mathrm{A}}, Z$, and Y; however, here again, the error of calculation for $P_{\mathrm{E}_{+\mathrm{A}}}$ is too great for this method to have any value. The above Debye expression cannot be applied directly to the temperature variation of the polarisation of liquids, because of the considerable temperature coefficient of the solvent effect. Disregard of this variation of the solvent effect with temperature has led to the recording of abnormally low values for moments, when these have been calculated from the dependence on temperature of the polarisation in dilute solutions (cf. Smyth and McAlpine, J. Chem. Physics, 1935, 3, 347), and to a rise in the apparent moment of certain substances if calculated at a series of rising temperatures, as has indeed been noted by Jenkins (Trans. Faraday Soc., 1934, 30, 739). In the present state of our knowledge of the solvent effect as developed in this series it is not practicable to make the necessary solvent-effect corrections to measurements in suitable solvents over a sufficiently wide range of temperature.

From these considerations of the errors to which the polarisation is liable, it appears that the sole uncertainty, necessarily remaining in both vapour and liquid measurements, is centred in $P_{\mathrm{E}+\mathrm{A}}$. It should therefore be possible both to eliminate it as a source of error and to determine its magnitude, by a comparative study of suitable measurements made in both phases, in which uncertainties due to ideal-gas deviations in the one phase and the solvent effect in the other have been corrected. The method employed by Groves and Sugden (loc. cit.; cf. Sugden, Trans. Faraday Soc., 1934, 30, 734) in which the ratio $P_{\mathrm{E}+\mathrm{A}} /\left[R_{L}\right]_{\mathrm{D}}$ is taken as 1.05 is a useful approximation for certain classes of substance, but as shown by Cartwright and Errera (Proc. Roy. Soc., 1936, A, 154, 138), Watson and Ramaswamy (ibid., 1936, A, 156, 144), and Coop and Sutton (J., 1938, 1269), much higher

Table I.
Polarisation Constants of Non-polar Hydrocarbons at 20°.

	Liquid.								Vapour.	
	$P_{\text {E }}$.	${ }^{\text {R }}$ L $]$ b.	$\begin{gathered} P_{\mathbf{E}+\mathrm{A}}^{\text {liq. }}+Z_{(\varepsilon-1)}^{(\varepsilon+2)} \\ \text { (electric poln.) } \\ \text { obs. } \end{gathered}$	Z (derived poln. coeff.).	$\frac{(\varepsilon-1)^{4}}{(\varepsilon+2)^{4}}$	$z z^{(\varepsilon-1)^{4}}{ }^{\text {c }}$.			$\begin{gathered} P_{\mathbf{c}}^{\mathrm{Pap}} \mathbf{i} \\ \text { (electric } \\ \text { poln.), obs. } \end{gathered}$	
$n-\mathrm{C}_{5} \mathrm{H}_{12}$	24.71	$25 \cdot 3{ }^{1}$	$25 \cdot 3{ }^{1}$	-	-	-	-	$24 \cdot 8$	$25 \cdot 2{ }^{5}$	$25 \cdot 2$
$n-\mathrm{C}_{6} \mathrm{H}_{14}$	$29 \cdot 2{ }^{1}$	$29 \cdot 9{ }^{1}$	$29.9{ }^{1}$	143	0.00295	$0 \cdot 42$	29.5	$29 \cdot 3$	29.95	$29 \cdot 8$
$n-\mathrm{C}_{7} \mathrm{H}_{16}$	$33 \cdot 7{ }^{1}$	$34 \cdot 5{ }^{1}$	$34.5{ }^{1}$	163	0.00314	0.50	34.0	$33 \cdot 9$	$34 \cdot 2{ }^{5}$	$34 \cdot 4$
$n-\mathrm{C}_{8} \mathrm{H}_{18}$	$38 \cdot 2{ }^{1}$	$39 \cdot 1{ }^{1}$	$39 \cdot{ }^{1}$		-	-	-	$38 \cdot 4$		
$n-\mathrm{C}_{9} \mathrm{H}_{20}$	$42 \cdot 9{ }^{1}$	$43 \cdot 8{ }^{1}$	$43 \cdot 7{ }^{1}$	-	-	-	-	$42 \cdot 9$	-	
$n-\mathrm{C}_{10} \mathrm{H}_{22}$	$47 \cdot{ }^{1}$	$48 \cdot{ }^{1}$	$48 \cdot 3^{1}$	-	-	-	-	$47 \cdot 5$	-	
$n-\mathrm{C}_{11} \mathrm{H}_{24}$	51.91	$53 \cdot 1{ }^{1}$	$52.9{ }^{1}$	-	-	-	-	$52 \cdot 0$	-	
$n-\mathrm{C}_{12} \mathrm{H}_{26}$	$56 \cdot{ }^{1}$	$57.7{ }^{1}$	$57 \cdot 3^{1}$					56.5	-	
$\mathrm{C}_{6} \mathrm{H}_{6}$	$25 \cdot 1^{6}$	$26.2{ }^{2}$	$26.6{ }^{2}$	90	0.00802	$0 \cdot 72$	$25 \cdot 9$	$25 \cdot 9$	-	-

${ }_{1}{ }^{2}$ Dornte and Smyth, J. Amer. Chem. Soc., 1930, 52, 3546. ${ }^{2}$ Goss, J., 1935, 727. 3 See Table VI. ${ }^{4}$ By summation of atomic contributions, see Table II. ${ }^{5}$ Kubo, Sci. Papers Inst. Phys. Chem. Res. Tokyo, 1935, 26, $242 . \quad{ }^{6}$ McAlpine and Smyth, J. Amer. Chem. Soc., 1933, 55, 453 (cf. Groves and Sugden, J., 1934, 1094; Ramaswamy, Proc. Ind. Acad. Sci., 1936, 1, 108). ${ }^{7}$ From $P_{\mathrm{E}+\dot{\mathrm{A}}}^{\mathrm{rap}}=P_{\mathrm{E}+\mathrm{A}}^{\mathrm{Hq}}+A_{\mathrm{E}}(\varepsilon-1) /(\varepsilon+2)$, see Table III.
values for this ratio (or the analogous ratio $P_{\mathrm{E}+\mathrm{A}} / P_{\mathrm{B}}$) are quite common. Moreover, for the majority of substances, measurements in the vapour state are impossible owing to lack of volatility. Where both vapour and liquid measurements are available, the elimination and determination of $P_{\mathrm{E}+\mathrm{A}}$ can be effected as has been outlined in Part II (loc. cit.), and this will now be discussed in more detail, and for additional substances. It is also now shown that, within certain restricted limits, $P_{\mathrm{E}+\mathrm{A}}$ can be treated as an additive property, in which it somewhat resembles the molecular refractivity. Hence, it should be possible to determine $P_{\mathrm{E}+\mathrm{A}}$ for the volatile members of a series by this elimination method, and thence by adding appropriate increments, to calculate $P_{\mathrm{E}+\mathrm{A}}$ for the higher non-volatile members.

Derivation of the Distortion Polarisation for Liquid Paraffins.-The additive character of the electric polarisation for the non-polar series of normal paraffins in the liquid state has been demonstrated by Dornte and Smyth (J. Amer. Chem. Soc., 1930, 52, 3546), who found that the values (Table I) increase in a regular sequence just as do their molecular refractivities. The values can be reproduced by the sum of polarisations either for each atom or for each bond, the molecular values obtained being the same in each case. In Table II polarisations for carbon and hydrogen atoms are recorded, from which it is possible to calculate values for the electric polarisations of the liquid paraffins which agree very closely with the experimental values. The electric polarisation of non-polar liquids is composed, according to the solvent-effect equation suggested in Part I (Goss, J., 1937, 1918), of the two terms, $P_{\mathrm{E}+\mathrm{A}}^{\mathrm{uq}}+Z(\varepsilon-1)^{4} /(\varepsilon+2)^{4}$. The term involving the derived polarisation coefficient, Z, is quite small, but as it is found to be additive, the increment for CH_{2} being 0.07D. (see Table I), $P_{\mathrm{B}+\mathrm{A}}^{\mathrm{uq}}$ is necessarily also additive.

Table II.
Atomic Contributions to $P_{\mathrm{E}+\mathrm{\perp}}$ at 20°.*

* Calculated from Tables I and IV or the data of : ${ }^{1}$ Smyth and McAlpine, J. Chem. Physics, 1934, 2, 499. ${ }^{2}$ McAlpine and Smyth, ibid., 1935, 3, 55. $\quad{ }^{3}$ Smyth, Morgan, and Boyce, J. Amer. Chem. Soc., 1928, 50, 1536. ${ }^{4}$ Watson, Kane, and Ramaswamy, Proc. Roy. Soc., 1936, A, 156, 130 ; cf. Fuoss, J. Amer. Chem. Soc., 1938, 60, 1633. 5 Groves and Sugden, J., 1937, 1782.

The Significance of Partial Polarisations.-The values of $Z(\varepsilon-1)^{4} /(\varepsilon+2)^{4}$ employed in the calculation of $P_{\mathbf{E}+\boldsymbol{\Lambda}}^{\mathrm{uq}}$ for hexane and heptane are obtained from mixtures with ethyl bromide and ethyl iodide respectively. The partial polarisation $P_{\mathrm{S} 1}$ for the non-polar (X_{1}) and $P_{\mathrm{S} 2}$ for the polar (X_{2}) component of these mixtures, which are tabulated in Table V , are so defined as to conform to Lewis's nomenclature (Z. physikal. Chem., 1908, 61, 144). For example, $P_{\mathrm{S} 2}=\delta P^{\prime} / \delta n_{2}$, where P^{\prime} is the total polarisation of n_{1} molecules of X_{1} and of n_{2} molecules of X_{2}. The apparent molar polarisations P_{1} and P_{2} have been defined by Debye (" Handbuch der Radiologie," 1925, 6, p. 628), as, e.g., $P_{2}=\left(P-P_{1}\right) /$ $c_{2}+P_{1}$. The partial and the apparent molar polarisations become identical only at infinite dilution, but both of them add up to the total molar polarisation of the mixture $P=P_{\mathrm{S} 1} c_{1}+P_{\mathrm{S} 2} c_{2}=P_{1} c_{1}+P_{2} c_{2}$ at all concentrations. At the same time, for any one concentration, represented in Fig. 1 by the point S on the experimental curve $B B^{\prime}$, there is only one value of $P_{\mathrm{S} 1}$ or of $P_{\mathrm{S} 2}$ corresponding, in accordance with a theorem due to

Roozeboom (" Die Heterogenen Gleichgewichte," 1904, II, i, p. 288; cf. Lewis and Randall, " Thermodynamics," 1923, p. 38), to the intercepts $O C$ or $O^{\prime} C^{\prime}$ of the tangent $C S C^{\prime}$. On the other hand, there are two values of P_{1} given by $O B$ and $O D$ and two of P_{2} given by $O^{\prime} B^{\prime}$ and $O^{\prime} D^{\prime}$, intercepts of the chords $B S D^{\prime}$ and $D S B^{\prime}$. Similarly, although the ordinates, such as $T X$ of the curve $B T O^{\prime}$ represent the contribution $P_{\mathrm{S} 1} c_{1}$ of the non-polar component to the polarisation, yet there are two different values of $P_{1} c_{1}$, namely $U X$ and $S V$. A choice between the two values of $P_{1} c_{1}$ was made by Debye' (ibid., p. 630) by assuming that " die zur Geraden $B O^{\prime}$ gehören Ordinaten dürfen sehr Näherung als die Beiträge des Benzols zur Polarisation angesehen werden "; i.e., that the non-polar component probably behaves as an ideal solvent.

Fig. 1.
Polarisation of ethyl bromide and hexane at 20°.

Now, although Williams (J. Amer. Chem. Soc., 1926, 48, 1888) has shown that this is approximately true for non-polar liquids in a medium of low dielectric constant, there is no evidence to show that the polarisation of any liquid is proportional to concentration at higher values of ε. On the other hand, the partial polarisations given by Lewis's formulæ, $P_{\mathrm{S} 1}=\delta P^{\prime} / \delta n_{1}$ and $P_{\mathrm{S} 2}=\delta P^{\prime} / \delta n_{2}$, not only provide unambiguous polarisation coefficients under all conditions of electric field and concentration, but enable us to express the polarisation of the components of many such mixtures in terms of three fundamental properties (dipole moment, distortion polarisation, and molecular shape) of the component, and of the temperature and dielectric constant of the medium; this is done by means of the solventeffect equation $P_{\mathrm{S}}=P_{\mathrm{E}+\mathrm{A}}+Z(\varepsilon-1)^{4} /(\varepsilon+2)^{4}+Y / \varepsilon$ as described in earlier parts of this series (loc. cit.). For non-polar liquids Y is zero (see Table VI), and P_{S} is directly proportional to $(\varepsilon-1)^{4} /(\varepsilon+2)^{4}$ and is independent of the polar component of the mixture. $\quad P_{\mathrm{S}}$ values for n-hexane and n-heptane are plotted against $(\varepsilon-1)^{4} /(\varepsilon+2)^{4}$, whence the Z coefficients (see Table IV) are obtained directly from the slope of the straight lines passing through the points determined as shown in Fig. 2.

The Relationship between the Distortion Polarisation of Liquid and Vapour Hydrocarbons. -The possibility of a difference between the two values of $P_{\mathrm{E}+\mathrm{A}}$ for the liquid and the vapour phase for certain compounds has already been discussed (Goss, J., 1935, 727). In the case of benzene it was then shown that the difference between the electric polarisation of the two phases can be interpreted on the basis of the Raman-Krishnan theory of field anisotropy in the liquid state, and also that the liquid possesses what was then termed a " false" polarisation. This is now, owing to our increased knowledge of the polarisation of liquids, seen to be identical with the solvent-effect term $Z(\varepsilon-1)^{4} /(\varepsilon+2)^{4}$ discussed in the preceding paragraphs.

Fig. 2.
Partial molar polarisations at 20° of non-polar hydrocarbons.

Although, as Govinda Rau (Proc. Ind. Acad. Sci., 1935, 1, 498) has pointed out, the evaluation of the field anisotropy is not rigid, the results are found to be of the right order for simple types of compounds. The contribution of the anisotropy has therefore been calculated for four of the paraffin hydrocarbons and is set out in Table III. The optical

Table III.
Anisotropy coefficients and polarisation axes.

polarisation axes α_{1}, α_{2}, and α_{3} are calculated from the formulæ given by Krishnan (Proc. Roy. Soc., 1929, $A, 126,155), P_{\mathrm{E}}=4 \pi N\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) / 9$ and

$$
\alpha_{1} / \alpha_{3}=\left\{4+2 r^{\text {rap. }}+\sqrt{\left(4+2 r^{\text {rap. } . ~}\right)^{2}-4\left(2-9 r^{\text {rap. }}\right)\left(2-4 r^{\text {rap. }}\right)}\right\} /\left(4-18 r^{\text {rap. }}\right)
$$

where $r^{\text {rap. is the depolarisation factor for the vapour. It is necessary for the substance to }}$ have an axis of symmetry for these formulæ to be applicable. Similarly, the components of the polarisation field p_{1}, p_{2}, and p_{3} are calculated from $p_{1}+p_{2}+p_{3}=4 \pi$ and Krishnan's equation (10), which may be expressed as

$$
p_{1}=\frac{\frac{n^{2}-1}{4 \pi n} \sqrt{\frac{45 r^{\mathrm{Liq}} \cdot \boldsymbol{R} T \beta M}{d\left(6-7 r^{\mathrm{iq} \cdot}\right)}}+\left(n^{2}+1\right) \alpha_{3}-\alpha_{1}}{\left(\alpha_{1}+\alpha_{3} / 2\right)\left(n^{2}-1\right) / 4 \pi}
$$

 and s_{1}, s_{2}, s_{3} are the amounts by which p_{1}, p_{2}, p_{3} respectively differ from the isotropic field. Then $A_{\mathrm{E}}=-N\left(\alpha_{1} s_{1}+\alpha_{2} s_{2}+\alpha_{2} s_{3}\right) / 3$, where A_{E} is the molecular anisotropy factor as previously defined (Goss, loc. cit.) and the contribution to the electric polarisation is $A_{\mathrm{E}}(\varepsilon-$ $1) /(\varepsilon+2)$. The values of this contribution to the polarisation are recorded for the hydrocarbons in Table III. At first sight they appear not to be additive in character but this is due to the large temperature coefficient of A_{E} (loc. cit.). Krishnan and Rao (Indian J. Physics, 1929, 4, 39) have shown that the anisotropy exhibits a maximum value at low temperatures, falling to zero at higher temperatures. It follows from their work that at 20° the value of $A_{\text {E }}(\varepsilon-1) /(\varepsilon+2)$ has about its maximum value in the case of octane, whereas for the lower hydrocarbons the values at 20° are below their maxima. Comparison of the data in Tables I and III shows that the anisotropy contributions $A_{\mathbb{E}}(\varepsilon-1) /(\varepsilon+2)$ for these paraffin hydrocarbons, after allowance for the deviations from the maxima (see above), are numerically equal, within the limits of experimental error, to the reaction field contribution $Z(\varepsilon-1)^{4} /(\varepsilon+2)^{4}$. The relationship between the liquid and the vapour polarisation can thus be expressed for non-polar liquids as $P_{\mathbf{E}+\boldsymbol{A}}^{\text {vap. }}=P^{\text {inq. }}-Z(\varepsilon-1)^{4} /(\varepsilon+$ $2)^{4}+A_{\mathrm{E}}(\varepsilon-1) /(\varepsilon+2)$, which is the same formula as that derived experimentally for benzene (Goss, loc. cit., p. 729) where the supposed " false " orientation polarisation K is now identified as the reaction field contribution of the solvent effect, i.e., $Z(\varepsilon-1)^{4} /(\varepsilon+2)^{4}$ (see Part II). Since for the paraffins, and rather by coincidence, $Z(\varepsilon-1)^{4} /(\varepsilon+2)^{4} \approx$ $A_{\mathrm{E}}(\varepsilon-1) /(\varepsilon+2)$, the electric polarisation is identical for liquid and vapour. For benzene, $A_{\mathrm{E}}(\varepsilon-1) /(\varepsilon+2)$, which has been previously calculated (J., 1935, 727), is slightly greater than $Z(\varepsilon-1)^{4} /(\varepsilon+2)^{4}$ as may be seen from the data in Tables I and II.

Derivation and Additivity of the Distortion Polarisation of Alkyl and Aryl Halides.Having established the additive character of the contributions of carbon and hydrogen to $P_{\mathrm{E}+\mathrm{A}}$ and also to the experimental values of the polarisation, we now extend the additive principle to the halogens. Suitable data are available for the seven compounds listed in Table IV. The treatment for ethyl bromide has already been dealt with briefly in Part II (J., 1940, 757*). It was then assumed without supporting or rebutting evidence that $P_{\mathrm{E}+\dot{\perp}}^{\mathrm{va}} / P_{\mathrm{E}+\mathrm{A}}^{\mathrm{ugq}}=\mathbf{1 . 0 5}$; an estimate of the ratio has now been made by assessing A_{E} as in the case of the above hydrocarbons. It is necessary in making the calculation to assume an average value for two of the three axes, and consequently the calculated anisotropy factor is not precise, but is, however, of the correct order of magnitude. This calculation has been carried out for ethyl bromide and chlorobenzene, and from the results given in Table III it will be seen that $A_{\mathrm{E}}(\varepsilon-1) /(\varepsilon+2)$ is not greater than 5% of $P_{\mathrm{E}+\mathrm{A}}$, and hence, that the ratio $P_{\mathbf{E}+\boldsymbol{\Lambda}}^{\text {vap. }} / P_{\mathbf{E}+\mathbf{\Lambda}}^{\mathrm{uaq}}$ for both these substances can be taken as approximating to unity.

Consequently, for this type of substance the determination of the moment and of $P_{\mathrm{E}+\mathrm{A}}$ can be carried out by the method employed in Part II for ethyl bromide with sufficient accuracy if $P_{\mathrm{E}+\Delta}$ is assumed to have the same value for both liquid and vapour. The appropriate data for the substances mentioned are collected in Fig. 3 and Table IV.

The values of P_{O} at 20° are obtained in the following manner : from vapour polarisations recorded in the literature there is subtracted the value for $P_{\mathrm{E}+\mathrm{A}}$ corresponding to

[^0]Table IV.
Polarisation data leading to the evaluation of $P_{\mathrm{E}+\mathrm{A}}$ at 20°.

	$\left[R_{L}\right]$ d.	Assumed values of $P_{\mathrm{E}+\mathrm{A}}$.			P_{0}^{119}, calc. by solvent-effect equations.			$P_{0}^{\text {vap. }}$, calc. from vapour data.			$P_{\text {E }+\mathbf{A}}$,		P_{0}, point of intersection, Fig. 3.			
					point of intersection, Fig. 3.	calc. from Table II.										
$P_{\mathrm{E}_{+\mathrm{A}}} /\left[R_{L}\right]_{\mathrm{D}}=$		1.05	$1 \cdot 15$	1.25				1.05	$1 \cdot 15$	$1 \cdot 25$	1.05	$1 \cdot 15$	$1 \cdot 25$			
PhF.........	26•1	$27 \cdot 4$	$30 \cdot 0$	$32 \cdot 6$	$42 \cdot 4$	$43 \cdot 6$	$44 \cdot 7$	49.5	$45 \cdot 8$	$42 \cdot{ }^{1}$	$31 \cdot 3$	$31 \cdot 3$	$43 \cdot 9$			
PhCl	31.2	$32 \cdot 8$	$35 \cdot 9$		$55 \cdot 2$	$57 \cdot 5$		$59 \cdot 1$	54.5	-1	$34 \cdot 6$	$34 \cdot 6$	$56 \cdot 5$			
PhBr	$34 \cdot 0$	$35 \cdot 7$	$39 \cdot 1$		$57 \cdot 1$	$60 \cdot 2$		$62 \cdot 1$	56.9	-2	$37 \cdot 7$	38.3	59.0			
$\mathrm{Bu}^{\gamma} \mathrm{Cl}$.........	$25 \cdot 8$	$27 \cdot 1$	29.7	$32 \cdot 2$	85.5	$87 \cdot 9$	$90 \cdot 0$	$92 \cdot 6$	89.7	$86.8{ }^{3}$	$30 \cdot 6$	$29 \cdot 3$	$88 \cdot 2$			
EtBr	$19 \cdot 1$	$20 \cdot 1$	$22 \cdot 0$	$23 \cdot 9$	$77 \cdot 6$	$80 \cdot 6$	$83 \cdot 5$	$87 \cdot 3$	$85 \cdot 0$	$82.7{ }^{4}$	$23 \cdot 6$	$23 \cdot 6$	$83 \cdot 2$			
MeI	$19 \cdot 4$	$20 \cdot 4$	$22 \cdot 3$		$49 \cdot 5$	$51 \cdot 8$	-	$53 \cdot 3$	$50 \cdot 8$	4	21.9	21.9	$51 \cdot 2$			
EtI	$24 \cdot 2$	$25 \cdot 4$	$27 \cdot 8$	-	$73 \cdot 4$	76.7	-	$76 \cdot 4$	$73 \cdot 1$	${ }^{4}$	26.7	$26 \cdot 7$	$75 \cdot 1$			
${ }^{1}$ McAlpine 3 Wiswall and	and Smyth	myth, J. Ch	$\underset{\text { hem. }}{J .} \stackrel{\text { P }}{P}$	$\begin{aligned} & \text { hem. P } \\ & \text { hysics, } \end{aligned}$	$\begin{aligned} & \text { ohysics, } \\ & 1941, \end{aligned}$	$\begin{gathered} 1935, \\ 9,356 \end{gathered}$	$3,55$	$\text { Smyt }{ }^{2}$	Grov and	and cAlpi	Sugden, ine, ibid.	$\begin{aligned} & \text { J., } 1 \\ & 1934 \end{aligned}$	$\begin{gathered} 335,971 \\ 2,499 \end{gathered}$			

Fig. 3.
Variation of calculated values of $\mathrm{P}_{0}^{\text {vap. }}$ and $\mathrm{P}_{\mathrm{O}}^{\mathrm{liq}}$ with assumed values of $\mathrm{P}_{\mathrm{E}+\mathrm{A}}$.

$\mathbf{1} \cdot \mathbf{0 5}, 1 \cdot 15$, or 1.25 times $\left[R_{\mathrm{L}}\right]_{\mathrm{D}}$; by substituting the resulting values of P_{O} at the respective temperatures in the Debye expression, $0.01273 \sqrt{\overline{P_{0}} T}$, and taking a mean value as the dipole
moment, it is possible by the same expression to calculate the value of P_{0} rap. at 20°. Again using the same figures for $P_{E+\Lambda}$, and the recorded polarisations at 20^{8} of suitable binary liquids mixtures, we calculate $P_{0}^{u_{q}}$ by means of the solvent-effect equation (see above) and the intercept ratio $P_{0}^{\mathbf{u}_{0} .}=Y /\left[3 \sqrt[4]{\left(Z+P_{\mathrm{E}+\mathrm{A}}\right) / P_{\mathrm{E}+\mathrm{A}}-2}\right]$ as described in Part II (loc. cit.). Both $P_{\mathbf{o}}^{\text {rap. }}$ and P_{0}^{naq} bear a linear relationship to $P_{\mathrm{E}+\boldsymbol{\Lambda}} /\left[R_{L}\right]_{\mathrm{D}}$ and have a point of intersection corresponding to values of $P_{\mathrm{E}+\mathrm{A}}$ and P_{O} which are common to both liquid and vapour.

Table V.
Partial molar polarisation at 20°.

c_{2}.	$P_{\text {s2 } 2 .}$	$P_{\text {B1 }}$.	$c_{2} . \quad P_{\mathrm{B} 2} . \quad P_{\mathrm{B} 1}$. PhBr in CCl_{4} (see Table VII); $P_{E+\Lambda}=38.3$			c_{2}.	$P_{\text {s2 }}$.				
PhF in	$\stackrel{\text { see T }}{=}$	VII) ;				MeI in CCl_{4} (see Table VII)$P_{\mathbf{E}+\mathbf{A}}=21.9$					
0.00000	71	28.2	0.00000	83	$28 \cdot 2$	0.00000	63	28.2			
0.00728	71	28.2	$0 \cdot 00832$	82.5	28.2	$0 \cdot 00630$	63	28.2			
$0 \cdot 01443$	71	28.2	$0 \cdot 01754$	82	28.2	$0 \cdot 01276$	63	28.2			
$0 \cdot 02454$	70	$28 \cdot 2$	$0 \cdot 02809$	81	$28 \cdot 2$	$0 \cdot 02095$	62	28.2			
$0 \cdot 04220$	69	$28 \cdot 3$	$0 \cdot 05227$	80	$28 \cdot 3$	$0 \cdot 02888$	62	$28 \cdot 2$			
0.07534	68	$28 \cdot 4$	0.09717	77	28.5	$0 \cdot 04282$	61	$28 \cdot 3$			
$0 \cdot 14836$	65	28.6	$0 \cdot 19572$	73	$29 \cdot 2$	$0 \cdot 07795$	60	28.4			
$0 \cdot 25702$	62	30	$0 \cdot 30140$	70	30	0.11363	58	$28 \cdot 6$			
0.50159	58	33	$0 \cdot 48043$	66	33	0-18205	55	28.9			
$0 \cdot 75252$	57	36	0.73379	63	37	$0 \cdot 23209$	53	$29 \cdot 3$			
1.00000	56.3	38	1.00000	$62 \cdot 6$	40	$0 \cdot 32246$	51	$29 \cdot 8$			
						$0 \cdot 39028$	49	31			
						$0 \cdot 49048$	46	33			
						$0 \cdot 67196$	43	37			
			$\mathrm{Bu} \gamma \mathrm{Cl}^{2}$ in CCl_{4} (see Table VII) ;$P_{\mathrm{E}+\mathrm{A}}=29 \cdot 3$			$0 \cdot 85049$	42	42			
PhCl in CCl_{4} (recalc. from Goss J., 1937, 1918) ; $P_{E+\Lambda}=34$.						1.00000	41.8	46			
			PhCl in $\mathrm{C}_{6} \mathrm{H}_{6}$ at 25° (Smyth								
			0.00000 0.00687	122	$28 \cdot 2$ 28.2						
0.00806	82.0	28.1				0.00687 0.00822	121	$28 \cdot 2$ 28.2	Chem. Soc., 1928, 50, 1536)		
0.01531	81.5	28.1	0.00822 0.01271	120	$28 \cdot 2$ 28.2	$P_{\text {E }+\mathrm{A}}\left(\mathrm{C}_{6} \mathrm{H}_{8}\right)=25.9$.					
0.03142 0.04812	81 80	$28 \cdot 2$ $28 \cdot 2$	0.02719	118	28.3	0.0000	82	$26 \cdot 6$			
0.04812 0.08478	80 78	$28 \cdot 2$ $28 \cdot 3$	0.04086	116	$28 \cdot 4$	0.0786	77	27			
$0 \cdot 18906$	73	29	0.08017	112	$28 \cdot 8$	$0 \cdot 1988$	72	28			
0.47942	65	33	$0 \cdot 17989$	103	30	$0 \cdot 4007$	67	30			
$0 \cdot 89470$	62	39	0.40869	90	36	$0 \cdot 6020$	64	33			
1.00000	61.8	41	0.77657	83	45	$0 \cdot 7048$	63	34			
			1.00000	$82 \cdot 2$	50	$1 \cdot 0000$	$62 \cdot 1$	38			
						EtBr in $\mathrm{C}_{6} \mathrm{H}_{14}$ (see Goss, J., 1940, 755); $P_{E+\Delta}\left(\mathrm{C}_{6} \mathrm{H}_{16}\right)=$ $29 \cdot 3$.					
EtBr in CCl_{4} (recalc. from Goss$\mathrm{J} ., 1940,755) ; P_{\mathrm{E}+\Lambda}=23 \cdot 6$			EtI in CCl_{4} (see Table VII);			EtI in $\mathrm{C}_{7} \mathrm{H}_{18}$ (Smyth and Stoops,					
			$P_{\mathbf{E}+\mathbf{A}}=26.7$			J. Amer. Chem.		19			
0.00000	97	28.2	0.00000	90	28.2	51,33		H_{16})			
$0 \cdot 01326$	95	28.2	0.00807	89	28.2	33.9.					
$0 \cdot 02255$	94	$28 \cdot 3$	$0 \cdot 02288$	88	28.2	$0 \cdot 0000$	92	$34 \cdot 7$			
$0 \cdot 03601$	92	28.3	0.04058	86	28.3	0.0328	89	34.7			
$0 \cdot 04647$	91	28.3	0.08197	81	28.5	$0 \cdot 0365$	89	34.8			
0.08538	86	28.6	$0 \cdot 11800$	78	28.8	0.0843	85	$35 \cdot 0$			
$0 \cdot 12218$	83	$29 \cdot 1$	$0 \cdot 18076$	74	$29 \cdot 6$	$0 \cdot 1889$	79	36			
$0 \cdot 23730$	73	31	$0 \cdot 29625$	68	31	$0 \cdot 1430$	68	40			
$0 \cdot 55515$	59	40	$0 \cdot 47188$	61	35	$0 \cdot 6155$	62	47			
0.79674	56	46	0.75333	57	42	$0 \cdot 8035$	58	58			
1.00000	$55 \cdot 3$	53	1.00000	55.7	48	1.0000	56.2	72			

This method for the determination of $P_{E+\mathbf{A}}$ is necessarily restricted to compounds which have identical moments in the liquid and the vapour state. Where there is a possibility that, say, an alkyl chain may have more than one spatial arrangement (cf. Stuart, Physikal. $Z ., 1930,31,80$) and consequently different resultant moments, the use of such compounds in the above procedure is inappropriate because $P_{0}^{\text {rap. }}$ and $P_{0}^{1 \mathrm{lq}}$. may not be identical. Further restrictions are imposed where the compounds are too volatile in the liquid or too unstable in the vapour state. We have therefore been confined, in our attempt to assess the additive character of the distortion polarisation of the alkyl and aryl halides, to the compounds listed above. Moreover, since the error of measurement of the polarisation of this type of
compound is of the order of ± 0.5, this will also be the error in the calculation of $P_{\mathrm{E}+\mathrm{A}}$. However, the object of this work is not the evaluation of $P_{\mathrm{E}+\mathrm{A}}$ to a high degree of accuracy, but only sufficiently to permit the establishment of additivity within certain limits, so that we can, at a later stage, apply the calculated values to the higher, non-volatile homologues of the series specified. As the probable errors in the case of these homologues will still be of the same order, the use of additive $P_{\mathrm{E}+\mathrm{A}}$ coefficients, even with an error of $\pm 0 \cdot 5$, appears preferable to other methods of assessing $P_{\text {E+A }}$.

It will be seen from Table IV that the increments of $\left[R_{L}\right]_{\mathrm{D}}$ and of $P_{\mathrm{E}+\mathrm{A}}$ (determined by this elimination method) are from methyl to ethyl iodide identical at $4 \cdot 8$, so the additivity principle can be extended to iodine in the alkyl halides, the value of $P_{\mathrm{E}+\mathrm{A}}$ for iodine being 16.6. Using this to calculate $P_{\mathrm{E}+\mathrm{A}}$ for the higher alkyl iodides, we find that the ratio $P_{\mathrm{E}+\mathrm{A}} /\left[R_{L}\right]_{\mathrm{D}}$, which is 1.13 for methyl iodide, falls regularly to 1.05 for hexyl iodide and to below 1.01 higher in the series. The contributory values of $P_{\mathrm{E}+\mathrm{\Lambda}}$ for all the halogens can be obtained by subtracting from those of suitable halogen compounds the values for the alkyl and aryl residues calculated from the data for the hydrocarbons. Exaltations will arise from the presence of different types of bond (cf. Huggins, J. Amer. Chem. Soc., 1941, 63, 116), and allowance has been made for these in the " $P_{E+\Delta}$ calc." column of Table IV by making use of the known exaltations of the molecular refractivity. The values for bromine, chlorine, and fluorine have been calculated in this way from experimental data for ethyl bromide, chlorobenzene, and fluorobenzene, as there are data in the literature for the vapours of these substances which have been corrected to zero pressure.

The values of $P_{\mathrm{E}+\Delta}$ obtained by the elimination method described, and also those given by addition from the contributory values found for the constituent atoms, are compared in Table IV. The figures for bromobenzene and tert.-butyl chloride are in satisfactory agreement when allowance is made for the fact that the error of calculation of the elimination method increases in the order $\mathrm{I}<\mathrm{Br}<\mathrm{Cl}<\mathrm{F}$, and also that the vapour polarisations for these compounds have not been corrected to zero pressure. Owing to the volatility of the alkyl fluorides, the only suitable data for fluorine are provided by fluorobenzene.

The values of $P_{\mathrm{E}+\boldsymbol{\Lambda}}$ for the halogens given in this paper are not, of course, applicable to all states of combination; indeed, those for $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{X}_{2}$ and CX_{4} (see Table II) are considerably lower.

Values of P_{E} taken from the literature are included in Table II, whence $P_{\mathbf{A}}$ can be calculated by difference but is subject to the same probable error of about ± 0.5 as $P_{\mathrm{E}+\mathrm{A}}$; P_{A} does, however, appear to exhibit a tendency to increase from iodine to fluorine. The value for fluorine appears to be somewhat high, but it will be noticed from the data in

Table VI.
Polarisation constants at 20°.

	$P_{\text {E }+\mathbf{A}}$.	$Z,{ }^{1}$	$Y .{ }^{1}$	P_{0}.	μ.		$P_{\text {E }+\mathbf{A}}$.	$2 .{ }^{1}$	$Y .{ }^{1}$	P_{0}.	μ.
PhF	$31 \cdot 3$	$68 \cdot 9$	$88 \cdot 4$	$43 \cdot 9$	$1 \cdot 44$	MeI	$21 \cdot 9$	- $34 \cdot 3$	$92 \cdot 1$	$51 \cdot 2$	1.56
PhCl	$34 \cdot 6$	61.8	106.0	$56 \cdot 5$	$1 \cdot 64$	EtI	26.7	$47 \cdot 3$	$140 \cdot 5$	$75 \cdot 1$	1.89
PhBr	$38 \cdot 3$	$47 \cdot 6$	$99 \cdot 3$	$59 \cdot 4$	$1 \cdot 68$	$\mathrm{C}_{6} \mathrm{H}_{8}$	$25 \cdot 9$	90^{2}	0	0	0
$\mathrm{Bu} \gamma \mathrm{Cl}$	$29 \cdot 3$	$102 \cdot 0$	$206 \cdot 9$	$87 \cdot 5$	$2 \cdot 04$	$\mathrm{C}_{6} \mathrm{H}_{14}$	$29 \cdot 3$	143	0	0	0
EtBr	$23 \cdot 6$	48.3	$163 \cdot 3$	$83 \cdot 2$	1.99	$\mathrm{C}_{7} \mathrm{H}_{16}$.	$33 \cdot 9$	163	0	0	0

${ }^{1}$ Derived polarisation coefficients calculated by solvent-effect equation from data in Table V (cf. Fig. 2). $\quad 2$ At 25°. The change in Z for 5° is unlikely to exceed the error of measurement.

Table II that the P_{A} ratio for F / Cl in the CX_{4} series is $1 \cdot 0 / 0 \cdot 6$, even greater than the ratio of $5 \cdot 6 / 4 \cdot 1$ found for these monohalogen compounds. The high values of P_{A} for compounds containing fluorine have already been noted by Watson and Ramaswamy (loc. cit.).

Experimental.

Density, dielectric constant, and temperature were measured as previously described (Goss, J., 1933, 1343; 1935, 730; 1940, 893).

Preparation and Purification of Materials.-Fluorobenzene, prepared by the method of Bird and Ingold (J., 1938, 918), had $n_{\mathrm{D}}^{20^{\circ}} 1 \cdot 4667$ (cf. Schiemann, Z. physikal. Chem., 1931, A, 156, 397), $d_{4}^{20^{\circ}} 1 \cdot 0225$ (cf. Young, Proc. Roy. Dublin Soc., 1910, 12, 374).

A B.D.H. sample of methyl iodide was washed with sodium carbonate, dried with calcium chloride, and fractionated twice. The middle fraction had $n_{\mathrm{D}}^{20^{\circ}} 1.5303$ (cf. Cowley and Partington, J., 1938, 977). Ethyl iodide, similarly purified, had $n_{\mathrm{D}}^{20^{\circ}} 1.5128$ (loc. cit.).
tert.-Butyl chloride was prepared from recrystallised tert.-butyl alcohol (B.D.H.) (Organic Syntheses, $1928,8,50$). Washing was carried out with ice-cold 1% sodium bicarbonate. The compound was carefully fractionated, the lower third of the distillate being collected. It had $n_{\mathrm{D}}^{20^{\circ}} 1.3855$ (cf. Timmermans and Delcourt, J. Chim. physique, 1934, 31, 85).

A B.D.H. sample of bromobenzene was shaken successively with dilute sulphuric acid, sodium carbonate, and water, dried with calcium chloride, and the middle third of the distillate collected. It had $n_{\mathbf{D}}^{20^{\circ}} 1.5600$ (cf. Timmermans and Martin, ibid., 1926, 23, 745).

Densities and dielectric constants of these compounds and their mixtures with purified

Table VII.

Polarisations at 20°.

c_{2}.	ε.	$d_{4}^{20} 0^{\circ}$.	P_{12}.	c_{2}.	ε.	$d_{4}{ }^{20}{ }^{\circ}$.	P_{12}.
Methyl iodide and carbon tetrachloride.							
0.00000	$2 \cdot 2366$	1-5939	28.17	$0 \cdot 18205$	$2 \cdot 7532$	$1 \cdot 6778$	$33 \cdot 34$
$0 \cdot 00630$	$2 \cdot 2545$	$1 \cdot 5967$	28.39	$0 \cdot 23209$	$2 \cdot 9365$	1.7028	34.80
$0 \cdot 01276$	$2 \cdot 2737$	1.5995	28.63	$0 \cdot 32246$	$3 \cdot 242$	1.7511	$36 \cdot 64$
$0 \cdot 02095$	2.2942	$1 \cdot 6030$	28.87	$0 \cdot 39028$	$3 \cdot 524$	1.7896	38.09
$0 \cdot 02888$	$2 \cdot 3174$	$1 \cdot 6065$	$29 \cdot 15$	$0 \cdot 49048$	$3 \cdot 939$	1.8508	$39 \cdot 58$
$0 \cdot 04282$	$2 \cdot 3563$	1.6127	29.60	0.67196	$4 \cdot 814$	1.9776	41.28
$0 \cdot 07795$	$2 \cdot 4567$	$1 \cdot 6284$	$30 \cdot 69$	$0 \cdot 85049$	5.898	2-1280	$41 \cdot 89$
$0 \cdot 11363$	$2 \cdot 5605$	$1 \cdot 6449$	31.72	1.00000	$7 \cdot 081$	$2 \cdot 2673$	$41 \cdot 76$
Ethyl iodide and carbon tetrachloride.							
$0 \cdot 00000$	$2 \cdot 2353$	1.5939	$28 \cdot 15$	$0 \cdot 18076$	$2 \cdot 9933$	$1 \cdot 6474$	37.37
0.00807	$2 \cdot 2689$	1.5962	$28 \cdot 64$	0.29625	$3 \cdot 553$	1.6834	$42 \cdot 19$
0.02288	$2 \cdot 3296$	$1 \cdot 6005$	29.53	0.47188	4.449	1.7411	47.56
$0 \cdot 04058$	$2 \cdot 4029$	$1 \cdot 6056$	$30 \cdot 54$	0.75333	6.082	1.8406	53.10
$0 \cdot 08170$	2.5758	$1 \cdot 6177$	32.78	1.00000	$7 \cdot 719$	1.9357	55.70
$0 \cdot 11800$	$2 \cdot 7313$	1.6284	34.62				
Fluorobenzene and carbon tetrachloride.							
0.00000	$2 \cdot 2365$	1.5940	$28 \cdot 17$	$0 \cdot 14836$	$2 \cdot 6479$	1.5107	34.09
0.00728	$2 \cdot 2570$	1.5898	$28 \cdot 49$	$0 \cdot 25702$	2.9571	1-4496	$37 \cdot 86$
0.01443	$2 \cdot 2755$	1.5857	28.78	$0 \cdot 50159$	$3 \cdot 748$	$1 \cdot 3117$	$45 \cdot 51$
0.02454	$2 \cdot 3026$	1.5801	29.20	$0 \cdot 75252$	4.574	1-1682	51.37
0.04220	$2 \cdot 3511$	1.5702	29.94	$1 \cdot 00000$	$5 \cdot 472$	1.0225	56.25
0.07594	$2 \cdot 4431$	$1 \cdot 5513$	31.29				
Bromobenzene and carbon tetrachloride.							
0.00000	$2 \cdot 2386$	1.5940	28.20	$0 \cdot 19572$	$2 \cdot 8826$	$1 \cdot 5754$	37-80
0.00832	$2 \cdot 2654$	$1 \cdot 5935$	28.64	$0 \cdot 30140$	$3 \cdot 230$	$1 \cdot 5653$	$42 \cdot 17$
0.01754	$2 \cdot 2954$	1.5922	$29 \cdot 15$	$0 \cdot 48043$	3.833	1.5480	$48 \cdot 74$
0.02809	$2 \cdot 3296$	1.5913	$29 \cdot 70$	0.73379	$4 \cdot 627$	1.5223	$56 \cdot 14$
0.05227	$2 \cdot 4080$	$1 \cdot 5890$	$30 \cdot 96$	1.00000	$5 \cdot 431$	1.4950	$62 \cdot 61$
0.09717	2.5559	1.5849	33.21				
tert.-Butyl chloride and carbon tetrachloride.							
$0 \cdot 00000$	2.2384	1.5942	28.19	$0 \cdot 08017$	$2 \cdot 7132$	1-5274	$35 \cdot 44$
$0 \cdot 00687$	$2 \cdot 2768$	1.5882	28.84	$0 \cdot 17989$	$3 \cdot 3561$	$1 \cdot 4467$	$43 \cdot 42$
$0 \cdot 00822$	$2 \cdot 2858$	1.5872	28.98	$0 \cdot 40869$	$4 \cdot 981$	$1 \cdot 2676$	57.94
0.01271	$2 \cdot 3100$	1.5835	$29 \cdot 38$	$0 \cdot 77657$	$7 \cdot 942$	0.9970	$74 \cdot 41$
0.02719	$2 \cdot 3929$	1.5714	$30 \cdot 70$	1.00000	$9 \cdot 961$	$0 \cdot 8434$	82.21
$0 \cdot 04086$	$2 \cdot 4750$	$1 \cdot 5598$	31.98				

carbon tetrachloride, and the polarisations $\left(P_{12}\right)$ for the binary mixtures calculated therefrom, are recorded in Table VII.

The authors' thanks are due to the Chemical Society for a grant.
The University, Leeds, 2.
[Received, March 3rd, 1941.]

[^0]: * Errata. On this page lines 36 and $43:$ for P_{Δ} read P_{E+A}.

